Liner Regression
Cost Function
$h(x)=\theta_0+\theta_1x+….$
$h(x)=\theta^Tx$
Linear Regression
$J(\theta) = \frac{1}{2m}\sum{1}^{m}(h\theta(x^i)-y^i)$
$\frac{\partial{J(\theta)}}{\partial{\thetaj}}=\frac{1}{m}\sum{1}^{m}(h_\theta(x^i)-y^i)$
Gradient descent algorithm
repeat until convergence{
$\thetaj := \theta_j - \frac{ \alpha}{m}\sum{i=1}^{m}(h_\theta(x^{(i)})-y^{(i)}) x^{(i)}$
}
Feature scaling and mean normalization
$x_i=\frac{x_i-\mu_i}{s_i}$
$\mu_i$: the average of all the values for feature (i)
$s_i$ : standard deviation
learning rate
If α is too small: slow convergence.
If α is too large: may not decrease on every iteration and thus may not converge.Polynomial Regression
change the behavior or curve of our hypothesis function by making it a quadratic, cubic or square root function (or any other form).
Normal Equation
$\theta = (X^TX)^{-1}X^Ty$
Logistic Regression
Logistic Function or Sigmoid Function

Decision Boundary
$\theta^Tx \ge 0 \Rightarrow y=1$
$\theta^Tx \le 0 \Rightarrow y=0$
Cost Function
Gradient Descent
$h=g(X\theta)$
$J(\theta)=\frac{1}{m}(-y’log(h)-(1-y)’log(1-h))$
$\theta:=\theta-\frac{\alpha}{m}X^T(g(\theta X) -y)$
Advanced Optimization
1
2
3
4
5
6
7
8function [jVal, gradient] = costFunction(theta)
jVal = [...code to compute J(theta)...];
gradient = [...code to compute derivative of J(theta)...];
end
options = optimset('GradObj', 'on', 'MaxIter', 100);
initialTheta = zeros(2,1);
[optTheta, functionVal, exitFlag] = fminunc(@costFunction, initialTheta, options);Multiclass Classification: One-vs-all
Train a logistic regression classifier $h\theta(X)$ for each class to predict the probability that y = i .
To make a prediction on a new x, pick the class that maximizes $h\theta(X)$Overfitting
1) Reduce the number of features
2) Regularization
Regularized Logistic Regression
Neural Networks
Model Representation
- Forward propagation:Vectorized implementation
Multiclass Classification
one-vs-all
Neural Network(Classification)
L = total number of layers in the network
$s_l$= number of units (not counting bias unit) in layer l
K = number of output units/classesCost Function
Backpropagation Algorithm
Gradient Checking
Random Initialization